Hydraulic Fracturing Theory & Practice

R.D. Barree
Barree & Associates LLC
What is Hydraulic Fracturing?

Pad

Proppant Slurry
GOALS: Hydraulic Fracture Stimulation

- Maximize hydraulic frac length
- Achieve finite (non-zero) conductivity
- Minimize treatment cost
- Minimize conductivity damage
- Minimize damage to the formation
- Maximize number of zones producing
- Drain everything connected to the well
- Accelerate recovery & add reserves
McGuire-Sikora Folds-of-Increase Curves for Pseudo-Steady Flow

\[RC = \frac{k_f w_f}{k} \sqrt{\frac{40}{A}} \]

\[SR = \frac{J}{J_o} \left(\frac{7.13}{\ln(0.472 \frac{r_e}{r_w})} \right) \]

0 2 4 6 8 10 12 14

0 1000000 100000 10000 1000 100

Relative Conductivity, inches

Stimulation Ratio

L/r_e

0.1 0.2 0.3 0.4 0.6 0.8 1.0
Well Performance: Setting the Benchmark

- Pressure buildup analysis
 - lose or defer production
 - must wait for well to clean-up
 - takes ‘forever’ to reach radial flow
- Production performance analysis
 - long flow times
 - takes ‘forever’ to reach flow boundaries
 - lots of data to archive
- Decline curve (Arps) Analysis: Beware of exponents >1
 - still in transient flow
 - not volumetric reservoir performance
 - decline curves are not valid
Fractured Well Performance
Actual vs. Expected

- 200,000 lb frac
 - Created $X_f > 1000'$
 - $k = 0.15$ md
 - Effective $X_f = 20$
 - OGIP = 10 BCF

- $X_f = 300'$, $K_iW_i = 1000$ md-ft
- $X_f = 1000'$, APC < 1 lb/ft²
- $X_f = 20'$, $K_iW_i = \text{infinite}$
Business Case for Frac Improvement

• Assumptions:
 – Single Well, Total Depth 8500’
 – Net pay thickness = 50 feet
 – Average effective permeability = 0.15 md.
 – Drilling and Completion per Well: $1.4 mm
 – Fracture Stimulation: $80,000
 – Gas Price $6.50/mcf
 – Current Effective Fracture Half Length Xf= 20’

• Evaluate impact of an increase in effective length to 300’ or 600’ with proper design and formation characterization
Gas Rate Decline: Stimulated Wells

Infinite conductivity X_f:
- $X_f=600'$
- $X_f=300'$
- $X_f=20'$, Actual Well
- $X_f=0$, Skin=+5
Cumulative Production: Stimulated Wells

Estimated Cumulative Production

Infinite conductivity X_f:
- $X_f=600'$
- $X_f=300'$
- $X_f=20'$, Actual Well
- $X_f=0$, Skin=$+5$

0.75 BCF Incremental
Business Case Economic Analysis

Base case economics – first 3 years production

– Fracture half-length increased from 20’ to 300’
 • Incremental NPV@20% $6.5 MM per well

– Fracture half-length increased from 20’ to 600’
 • Incremental NPV@20% >$10.0 MM per well
Find & Fix the Problem

• Why is current Xf = 20’?
• Can a longer length be achieved?
• What must be changed to improve performance?
• Can treatment cost be decreased without loss of production?
The Challenges

- Frac geometry
 - not creating expected length
 - growth out of zone
- Proppant transport
 - prop falling out of zone
 - prop pack not connected to perfs
- Final conductivity
 - gel damage; breaker/clean-up issues
 - proppant crushing; non-Darcy flow
- Reservoir properties
 - Kh isn’t what you expected
 - Drainage area less than desired
What do we need to know to ...

- Define the problem
- Benchmark our performance
- Decide what to change
- Generate realistic expectations
- Optimize completion/stimulation
- Get what we want or what we should expect from our wells
Good Results Come From

• Adequate reservoir characterization
• Accurate design models
• Pre-frac diagnostics
• Post-job analysis